
Recursion
When to use it and when not to use it

Basics of Recursion

� Recursion uses a method

� Within that method a call is made to
the same method

� Somewhere within the method, the
loop must be exited

Disadvantages

� 3 major disadvantages

� Slow algorithms

� e.g. recursive Fibonacci:
int fib (int n)

{

 if (n <= 2) return 1;

 else return fib (n – 1) + fib (n – 2);

}

Disadvantages Cont.

� Procedure call overheads: 30% slower

� Not much time lost though

� Data on stack (stack overflow)

� Not much of a problem these days

� Watch out for using more than the
limit

Disadvantages Summary

� The first one is the one to watch out
for (slower algorithms)

� The other two can almost be ignored
(procedure call overheads and data on
stack)

What to Use Instead

� If iteration is easy to program, use it

� If dynamic programming works, use it
instead

Why Use Recursion?

� Easy to program

� Easy to debug

� Shorter than dynamic programming

n Queens Problem

� Place n queens on an n x n chess
board so that no queen is attacked by
another queen

� Find out the total number of
configurations

n Queens Solution

� The most obvious solution is to
recursively add queens, trying all
possible placements

� It is easy to see that there can only be
one queen per column

� At each step, you know the position of
the queens for the first i columns

n Queens Solution Cont.

� You try to place a queen in the i + 1
column

� If successful, you move on to the next
step, trying to place a queen in the i +
2 column

n Queens Solution Cont.

XXQXQQ
XXX →
X

→
X

→
XQ

→
Q

XQXQXQXQ

QX
XXQQ →
X

→
X

→
X

→

XQXQXQQ

n Queens Solution Cont.

QX
XQQQX →
X

→→
X

→
XQ

XQQXX

XQXQQQ
XXQX →
XQ

→
XQ

→
Q

→
XQ

XXQQX

n Queens Solution Cont.

XQQQQ
XQQX →
X

→
X

→→
X

XQXQQX

XXXQQ
XQXQXQQ →
X

→
X

→
X

→
Q

XXQXQQ

n Queens Solution Cont.

→

XQXQQXQ
XXX
X

→
XQ

→
Q

→
X

FINISHED

XXXXQ

n Queens Solution Cont.

� void search (int col)
{
 if (col == n)
 {
 count++;
 return;
 }
 for (int row = 0; row < n; row++)
 if (not_attacked (row, col))
 {
 board [col] = row;
 search (col + 1);
 }
}

n Queens Solution Cont.

� The not_attacked method simply
checks to see if the queen can be
placed in that particular block

n Queens Analysis

� Since the number of possibilities is
small, recursion is quick enough in this
case

� For a 10 x 10 board it runs for 0.11 s

� This solution is also an example of
depth first search

� In questions similar to this, use
recursion, since it is easier to program

Little Flower Shop IOI ’99

� ��� � 	
� � ��
� �
 � �� � � � 	 � � � � 	 � ��� � �� �� � 	� � � � � � � �

� � � � � � �
 �
 � � 	
� � ��� � �
� � � � � � � � � � � � �� � 	� � �! �
 � �

�� ��� � � �
 � � � �� � � � � " ��� �
 � �
 � � �
 � �
 � �
� � �
 �� � #$ %

� � �&� � � � ���
 � � 	 �

' (� � � � � � � � �
� � � � � �
 � � �
� �
� � � � ��) � � �� � � � � � � � � � � ��

��� �� � � � � �� � 	� � � *
 � � � � (� � �� � �,+ � � � �� � � �
� �

� � � � � � � �
 � �� � (� � � � � �� � � ��� � � � � � �) � �� � � � � �&� � � �
 � ��
�
 � ��

� � � � � � � � 	� � � � � � � � � � � � � � � � 	 � � �
 �� � � (� � � � � � � � � � � �

�� � � � � � � � � � � � � � � � �- 	 � � � � � � � � . - �

' /10 �� � � �
 �� � 	 � � � �� � � � � � � � �� � 2 �
 �� �
� � � �� � � � � � � �

� � � � � � � � � � 	� � � �

Little Flower Shop Cont.

' /
 � � �
 �� �
 �
 � � � � ��� � � � �
�
 � �� � � � � � � #- � � � � � "� � � � 	� � � � � % �3 � � �� � � � � ��� �
 � � � � � � � �� � 	� � � ���
 �
 �� � � � � � � � ���

�� � �
 � �
 � � � � � � � � �
 � � � � (� � �� �
 � � � �
� � �� � �� � �� � ��� � � �

�� � � � 	 ��� � �
 � � �4

20-20-45-213
2310-42152
1624-52371

FLOWERS

54321
VASES

Flower Solution 1

5 We could use recursion:

6 int flo (int f, int v)

{

 if (f == F)

 return 0;

 int m = 0;

 for (; v <= V – F + f ; v++)

 m = max (m, grid [f][v] +

 flo (f + 1, v));

 return m;

}

Flower Solution 1
Analysis

7 In the initial problem, the vase
numbers must also be output

7 It is far too slow

7 It tries every solution to find the
maximum

Flower Solution 2

7 The first solution was too slow

7 This time we’ll try dynamic
programming

7 Start from the second-last row

7 Scan each row from left to right

7 Add the maximum value in each block

Flower Solution 2 Cont.

8 int m;

for (int i = F - 2; i >= 0; i--)

{

 m = -100;
 for (int j = V – F + i; j >= i;j--)

 {

 m = max (m, grid [i + 1][j + 1]);

 grid [i][j] += m;

 }

Flower Solution 2 Cont.

8 int answer = -1000000;

for (int i = 0; i < F; i++)

 ans = max (ans, grid [0][i]);

Flower Solution 2 Cont.

9 The solution is
illustrated in the
tables on the right

9 The top table is
before

9 The bottom table is
after

9 Yellow numbers
were changed

:;< :;< =>< :?@

:A? ;< =:?>B

? C: =< >:ADE

FG@BE

:;< :;< =>< :?@

:AA ;? C=?>B

? C: =: >>A=?E

FG@BE

Flower Solution 2
Analysis

H Only the necessary calculations are
done

I Much faster algorithm (0.05 s, quicker
than 2 s allowed)

I To determine the vase numbers is
easy

Flower Analysis

I In this case, recursion is not fast
enough

I As always, if dynamic programming
works, use it

I Not all problems can be solved with
dynamic programming, since it uses
more memory

Conclusion

I When recursion runs within the time
limit, use it

I If it doesn’t, try using dynamic
programming or another technique

I If you can’t do it any other way, use
recursion to get partial marks

Conclusion Cont.

I Remember, many other techniques
use recursion, so it is important to
know well

I Most graph theory (shortest paths,
etc.) uses recursion

